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Abstract

The radiative transfer equation is solved by the finite-volume method in an axisymmetric two-dimensional geometry
with absorbing, emitting, and either isotropically or anisotropically scattering gray medium. Explicit expressions of the
coefficients appearing in the discretized angular redistribution term have been determined. These coefficients verify the
recursive relation established by Carlson and Lathrop [Greenspan, Kelber, Okrent (Eds.), Computing Method in
Reactors Physics, Gordon and Breach, New York, 1968, p. 171] and lead to accurate numerical results.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The axisymmetric radiative transfer in cylindrical
enclosure has been studied extensively due to its geo-
metric simplicity and practical engineering applications
to gas turbine combustors, heat pipes, nuclear reactors
safety and pulverized coal combustors. During the past
few decades, numerous methods have been proposed to
solve the radiative transfer equation (RTE), which is
integro-differential equation in nature (Monte Carlo
method [1], flux method [2], zones method [3], Galerkine
method [4], Harmonic spherical method [5], method of
solution based on using appropriate expansion functions
[6], discrete ordinates method, MOD [7,8] and the finite-
volume method (FVM) [9-13)).

The axisymmetric RTE includes a partial derivative
with respect to an angular coordinate, typically referred
to as an angular redistribution term (ART) of radiative
energy. Following the artifice of Carlson and Lathrop
[14], which maintains neutron conservation and permits
minimal direction coupling, among other works using
the DOM, Fiveland [7], Jendoubi et al. [8] and Jama-
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luddin and Smith [15] have used a recursive relation for
the numerical treatment of this term. The recursive
relation determined by [14] has been also used by Baek
and Kim [13] to develop a modified discrete ordinates
method (MDOM) in order to study radiative transfer in
an axisymmetric cylindrical enclosure.

A FVM has been used by Chui and Raithby [9] to
compute radiant heat transfer on a nonorthogonal,
boundary-fitted meshes. To solve three-dimensional
radiation problems in cylindrical enclosures, Chui et al.
[10] have implemented a FVM and present a mapping
for solution of axisymmetric problems by solving the
intensity in a single azimuthal direction. The FVM for
computing radiative heat transfer has been extended to
domains with periodic boundaries by Mathur and
Murthy [16]. The authors have used a new technique to
account for control angle overhang, and to correctly
redistribute radiant energy at rotationally periodic
boundaries. An unstructured FVM for radiative heat
transfer has been developed by Liu et al. [17] and they
are applicable for 2D planar, axisymmetric and 3D
problems with structured, unstructured, or hybrid grids.
For a 2D axisymmetric problem, the authors have
employed the recursive relation developed by [14] to
treat the angular derivative term.
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Nomenclature

Ao, Ay, A, Ay surface area, m?

AQ™ discrete control (solid) angle

Dy radial directional weights a Stefan-Boltzmann constant (=5.67x107%
E emissive power (= ¢T*), Wm™2sr™! Wm2K )
H cylinder height, m T optical thickness (= k,r.)
1 actual radiative intensity, Wm™2sr™! 0p scattering angle
I° blackbody radiative intensity, Wm™2 sr~! Q, Q' outward and inward radiation directions
Ka absorption coefficient, m~! {73 scattering phase function
Ks scattering coefficient, m~! u,n, ¢ direction cosines
Ke extinction coefficient, m~! .
. . . 1 Subscripts
Kem modified extinction coefficient, m
. . b blackbody
N,, N. radial and axial nodal number .
. c cold, cylinder
Ny, N, polar and azimuthal angle number
" . . S g gas
o} dimensionless radiative heat flux
q" radiative heat flux, Wm™2 h hot
. . ’ E, W, T, B east, west, top, and bottom neighbors
R cylinder radius, m .
4 . C e nodal points of P
rz distance along radial and axial direction, m
. . e, w, t, b east, west, top, and bottom control volume
e cylinder radius, m
Ze cylinder height, m faces
¢ ’ P nodal point in which intensities are located
S source term (Eq. (2)) .
v temperature. K r related to the r-axis
P ’ z related to the z-axis
Greek symbols w wall
Oyl coefficients of the angular derivative term .
z . Superscripts
e emissivity 0 blackbod
b axial directional weights . Doy
oz . . m,n,m',n’ radiation direction
Ar, Az  radial and axial steps . radiative quantit
A0, Ay polar and azimuthal steps 4 y
For our knowledge, no rigorous explanation of this with

recursive relation has been presented. One intends, in the
present paper, to affirm the validity of this relation by
the determination of the explicit expressions of the
coefficients intervening in the discretized ART while
using the FVM and to validate the numerical results
obtained using the determined expressions by compari-
son with existing results.

The remainder of this article is divided into three
sections. The governing equations and the discretized
equations are firstly presented. This is followed by a
comparison of the present method (FVM) with other
available methods. Finally some concluding remarks
and an Appendix A are presented.

2. Mathematical formulation

Radiative heat transfer in a gray semi-transparent
medium is governed by the following equation [18]:

d/

B, —ke(P(7, Q) + S(7, Q) (1)

K5 (F)
47

S = K (AI(F) + / IE)e@ - 3)dd ()
4n
where Q is the direction of propagation defined as:

—

Q= 1@, + 2, + ¢

and (u,7,¢&) are the direction cosines expressed as fol-
lows:

(u=sinfcosy,n =sinOsiny, & = cos 0)

(0,) are respectively, the polar angle and the azimuthal
angle defining the direction of propagation Q (Fig. 1).

In the case of axisymmetric radiative transfer, Eq. (1)
is expressed in cylindrical coordinates as follows:

10
— (¢ == (nl)
(0z0w) 02 oy T OV

=~k + S(7, Q) (3)

(rp,2,0)

In Eq. (3), it appears a supplementary term regardless
the RTE expression in cartesian coordinates, namely
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Fig. 1. Angular coordinate (6,) of the direction @ defined in
the cylindrical base (é,,é,,é.).

called angular redistribution term (ART), whose
expression is as follows:

10
ART = —7—(171) 4)
aw (r,,2,0)

3. Numerical procedure

Eq. (3) is solved numerically by the FVM [19]. The
spatial domain is subdivided in N, x N, spatial control
volumes (Fig. 2) where:

Ar=£ and Az:E
N, N.

R and H are respectively, the radius and the height of the
cylindrical enclosure and Ar and Az are, respectively r
and z space steps:

Ar=r.—ry; AZ =2z —z

z
F 3

1 —— v

L — r
) /
::’/
T @ b @aP4c oF
14
Zz
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Fig. 2. Spatial control volume in the r—z plane.

Fig. 3. Control solid angle.

The total solid angle (2 = 4nstr) is subdivided in
Ny x Nw control solid angles, where A0 :i. and
Ay =

A@ and Ay are respectlvlely 0 and  steps: A0 =
0m+ﬁ _ 0’”*’ Aw l//’*z _ lV”?

The control angle AQ™ 1s defined (Fig. 3) by the
angular range |0" 2 =mA0;0" = (m—1)A0] and |y =
nAY;" = (n *1)A¢J-

s

AQ™ = /7_ sin 0d0dy

m,_

The radiative intensity at a point P and in the direction
(0™, y") is represented by I;". The integration of Eq. (3)
over the control volume Av and the control angle AQ™
gives:

/ / — —(IrsinfOcosy)dvdQ
Av Jaem T 6r
(a)
+/ / a(IcosO)d de
— v
v Jagm Oz
(b)
/ / L@ (IsinOsiny)dvdQ
- - — v
a0 Jagm T O

_ /A /AQ,M(”‘EI + S(7 0)) dvd@ (5)
d

The development of terms (a), (b) and (c) leads to
(Appendix A):

() = D (A" ~ AV") (6)
(b) — Dmn

cz

(A = Aply™) )

Ay, Ay, Ay, A, are the areas of bottom, top, west and east
faces of the control volume Av, respectively, and D”" and
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D2 are the direction cosines regarding the r and z
directions, respectively.

A=Ay =n(2 —12), Ao=2mAzr., A, =2nAzr,
D = / (@-2.)de (8a)
AQ™
oy = [ (@@ .
AQ™
(C) - (Ae - AW)(OC"’"*’l/zlanrl/z — Opn— 1/21mn 1/2) (9)
where
O(anr - Sln(l//n+1/2){ M _ 1 [sin(29m+1/2)
2 4
—sin(20"" 2)}} (10a)
Oyt = — sin(l//”’l/z) M _ 1 [Sin(26m+1/2)
2 B 4
—sin(20""" 2)}} (10b)

The discretized angular redistribution is written, in the
same form as by Carlson and Lathrop [14] in the same
form and the coefficients o,,41/> and «,,_i,» are deter-
mined by a recursive relation based on the condition of
radiative energy conservation:

__ pymn
amn-%—% — Oyl = Dcr (1 la)

%,; =0 (11b)
It can be easily shown that these recursive relations are
verified by the established expressions (Egs. (10a) and
(10b)):

A0 1 ot |
%{%f{jﬂwmmmM%Wﬁ
—sinlﬁ”f%)
1 1
¥ " /14 cos20
=/] cos1//d1///l (&)de
e ot 2
o !
:/I cosd/dt///] sin? 0d0
y'2 02
v 2 E)"H%
:/] / cosy sin® 0dOdy = D™
s St

Oyt = — sin(O){ A20 i [sin(2 0'"*’) sin(29’"’%)]} =0

The development of term (d) leads to (Appendix A):

(d) = =K ADAQ™ " + Sp" Av AQ™ (12)

where
Syt = I[m" D AQ™ + Sop (13a)
mn __ 0 Ke m’n’ —=m'n'mn m'n'
S = Kalp(T) + oo AQ (13b)
(Y Emyn)
5m’n/mn / / 4, - Q dodo
A QA Qm n o Ao
(13¢)

In order to overcome the convergence problem of the
numerical solution, due to the discretization of the phase
function that must verify the normalization condition
(4‘7 Do P AQTT = 1), a correction coefficient y is
used. This coefficient is obtained such:

4 Z _._,y (Dmnmn Aan — ] (]4a)
Then
1
= 1 mnm'n' ' (14b)
an Zm’n’ ¢ AQ
The  function " s replaced by 5’1’1/"% =
(1 + 'y)®m nmn
Considering the modified extinction coefficient as:

Kgnn’; — Ka + KS 4_ (pmnm n Aan (15)

the system of algebraic equations becomes:

ADI" — AWDoY 4+ A D ™ — Ay DL
— K ADAQT "+ ST ACAQ™ + (A, — A)
X ( mn+11mn+2 - mnfllmn77) (16)

This system of algebraic equations has more unknowns
than the number of equations. Therefore other equa-
tions must be introduced to relate the control volume
facial intensity as well as the edge intensity of the
angular range to the nodal intensity. The following
simple step scheme is used to ensure positive intensity
[10,13]:
For D" > 0 and D' > 0

=1 (17a)
= (17b)
=1 (17¢)
=" (17d)
[ = (18a)
1’"”" et (18b)

with the condition: 1;"% = I [20].
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Rearranging Eq. (16) for /}” and substituting Eq.
(18a) for direction mn + 1 results in:

mn—:

AL DRI+ A DI — (e — Ay )2, T LLsmAYAQ™
(Ae Dy +A D — (A = Aw) %y, 1+ K5 AV AQ™)

(19)
Egs. (18a) and (18b) hold for all directions, while Eqs.
(17a)—(17d) need to be rewritten as the direction cosines

mn __
I =

2505

e Enclosure with an absorbing and emitting medium.
e Enclosure with scattering medium.

According to the symmetry condition along the
z-axis, the centreline is treated as a fictious, perfectly
specular reflecting boundary.

The results are presented in terms of normalized net
radiative heat fluxes defined by:

(D2 > 0 and D2 > 0) change sign. o1 .
" 8 =— Q.2,)dQ = npm 20a
-5 [ @) PR (200)
4. Validation of numerical results
We have considered two cases of cylindrical enclo- o = i (Q -2,)dQ = Z pm (20b)
. z E z P cz
sures whose walls are assumed black: b Jo-4n mn
0.16 — —
Q L 1.00 Q¥
] (a) (b)
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A+ +
+ Dua and Cheng [21] R +
} '|; A Our results " 0.60 — + + Dua and Cheng [21] +
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Fig. 4. Comparison of dimensionless radial radiative heat flux profiles at the lateral cylinder surface for three optical thickness (a)

t=0.1,(b)t=1and (c) t = 5.
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where the normalization constant E}, is the maximum
emissive power, which is equal to ¢7; in the first test
case (i.e. an absorbing-emitting medium) and equal to
6T in the second test case (i.e. a purely scattering
medium).

These two problems are solved by the present FVM
using expressions (10a) and (10b). In order to verify the
validity of the established expressions (i.e. Egs. (10a)
and (10b)), comparisons are made with existing results
[8,21].

4.1. Enclosure with absorbing—emitting medium

The first test case involves a cylindrical enclosure
containing a homogeneous, absorbing—emitting medium
maintained at constant temperature (7, = 100 °C).The
walls are assumed cold (T, = 0 °C) and black (&, = 1).
The cylinder dimensions are: height z. = 2 m and radius
re=1m.

The number of spatial control volumes used for this
calculation is (N, x N.) = (15 x 35). Because of the
problem symmetry, the total solid angle 4z is divided
into (Ny x %) = (6 x 8) control solid angles which is
analogous to the conventionnel S;;, DOM in the number
of radiation directions.

Fig. 4 shows a good agreement, especially for higher
values of the optical thickness, between our results and
the exact analytical solutions of radiative transfer in an
absorbing, emitting medium in a cylinder obtained by
Dua and Cheng [21]. Larger value of 7 result in larger O
because emission is higher. Errors of up to 5% in
these exact results are expected because they were ob-
tained by digitizing published plots. The discrepency
between our results with the exact solutions obtained
by [21] decrease with the optical thickness and this is

due especially to the step scheme used here which
become inaccurate in the case of small values of the
optical thickness.

4.2. Purely scattering medium

The dimensions of the cylinder are height z. =2 m,
radius r. = 1 m. The lateral surface is the hot surface
with 7, = 100 °C and the temperature of the bases is
T. =0 °C.

The scattering phase function is approximated by a
finite series of Legendre polynomial series as:

N
O(Q — Q) = d(cos ) = Z C;P; cos(0p)
=0

where 0p is the scattering angle between the incoming
direction @' and the outgoing direction Q (cosOp =
Q.9 C;’s are the expansion coefficients and P; is the
Legendre polynomial of order j. The expansion coeffi-
cients in the case of forward-scattering (F; and F3) and in
the case of backward-scattering (B, and B;) are pre-
sented in Table 1 [22].

The number of spatial control volumes used for this
calculation is (N, x N,) = (15 x 35) and the total solid
angle 4 is divided into (Ny x ) = (6 x 8).

Predictions of the non-dimensional heat flux distri-
bution on the lateral area (Figs. 5-9) are shown for
five different scattering conditions. As can be seen in
these figures, the forward-scattering phase function 5
transfers the most amount of radiation from the hot
wall into the cold medium. The backward-scattering
phase function B transfers the least amount of radiative
energy.

Table 1
Expansions coefficients in the phase function expansion [22]
J F I8! F By By
0 1.00000 1.00000 1.00000 1.00000 1.00000
1 2.53602 2.00917 1.20000 —0.56524 —-1.20000
2 3.56549 1.56339 0.50000 0.29783 0.50000
3 3.97976 0.67407 0.08571
4 4.00292 0.22215 0.01003
5 3.66401 0.04725 0.00063
6 3.01601 0.00671
7 1.23304 0.00068
8 1.30351 0.00005
9 0.53463
10 0.20136
11 0.05480
12 0.01099
N 13 9 3 6 3
C1/3 0.84534 0.66972 0.40000 —-0.18841 —-0.40000

N + 1: number of terms in the phase function expansion, C;/3: asymmetry factor.
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Fig. 5. Radiative flux profiles on bottom and top cylinder
surfaces for isotropic scattering for purely diffusing medium
case.

N-

0.90 — Q

0.80 — € Jendoubi et al. [8] ‘

i @ Our results

L
[ ]

0.70 —| .Q

1 ot

. ®
060 - % o @ A I
T I T I T I T I T Ir/rc
0.00 0.20 0.40 0.60 0.80 1.00

Fig. 6. Radiative flux profiles on bottom and top cylinder
surfaces for B, scattering function for purely diffusing medium
case.

Comparisons with the numerical results obtained by
Jendoubi et al. [8] with the DOM shows a good agree-
ment.

5. Concluding remarks

Explicit expressions for the coefficients appearing in
the discretized ART have been determined using the

0.90 — [ ]
Q .
P L 2
] ° L 2
Y L 2
° o o
0.80— °3 *
% %o & %
@ Jendoubi et al. [8]
0.70— @ Our results
0.60 —
T T T T T T T T T |u'I‘c
0.00 0.20 0.40 0.60 0.80 1.00

Fig. 7. Radiative flux profiles on bottom and top cylinder
surfaces for F> scattering function for purely diffusing medium
case.
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Fig. 8. Radiative flux profiles on bottom and top cylinder
surfaces for B, scattering function for purely diffusing medium
case.

FVM. These coefficients verify the recursive relation
established by Carlson and Lathrop [14] and lead to
accurate numerical results.

Appendix A

By assuming that the radiative intensity is constant
on the east and the west control volume faces and in the
solid control angle AQ™, the development of the term
(a) yields to:
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Fig. 9. Radiative flux profiles on bottom and top cylinder
surfaces for Fj scattering function for purely diffusing medium
case.

/ / — —(rIsinfcosyy)dvdQ
Av JA

o r@

2n Zt re 1 a
= / / / / — —(rIsinOcosy)rdrdepdzdQ
JAQ™ JO zp rw r ar

=2mAz(r 0" — 1o I)") /

AQM

sinfcosyydQ

= 21 Az (r ™ — 1 I™) / 2 - QmdQ
o

=DNAJLM" — DI ALY

where D" = [, o (&, - @™)dQ is the direction cosine in
the r-direction and 4,, and 4. are the areas of the west
and east face of the control volume, respectively.

The development of the term (b) is also done by
assuming that the radiative intensity is constant on
the top and bottom control volume faces and within the
control solid angle. Considering these assumptions, the
term (b) will be written as:

/ / — (I cos 0)dvdQ
Ao Jagm

=n(2 -2 - I"‘”)/ cos 0dQ
A

= (2 = 20"~ D
= DAL — DA

where D" = [, (€. - @"™)dgQ is the direction cosine in
the z-direction and 4, and A4, are respectively the area
surfaces of the top and bottom face of the control vol-
ume, respectively.

The ART is developed by assuming that the radiative
intensity is constant w1th1n the control volume and in
the angle range LO"’" 0’”+2j Taking into account these
assumptions, the treatment of the term (c) leads to:

(Isin Osiny) dvdQ
/AL /Qn,,, r 61// V)

= —27tAzAr/ 0 (I sin Osiny) sin 0d0dy
som OV

o
*(Ae *AW)/ 1

"2

sin(6%) (I "I 5in Y- 11',""7l

x siny" %) do

_(Ae - Aw) Sin [pn+%{ %9 _ % [Sin(20m+%)
— Sln(zem—%)] }II':"‘F% + (Ae _AW) sin l//n—%{ %

1 —t
~ 4 [5in(20") — sin(20"Y) }1P :

mVI+2

= (e = A) sl = 0 ")

mn

where o, are coefficients of the ART defined as:

A0

1.
Onid = — Sll’l([//"“/z){ > i [Sln(zemﬂ/Z)

- sin(2(9’"’1/2)]}

Uyl = — sin(!//""/z){ % - % [sin(20™1/?)

mn—s

- sin(ze"’*‘/z)]}

The source term (d) is written as:

K5 (7)

S = 1, (A)I°(7) o / 1(7 Q) (3 — Q)d2
T 4n

The discretization of this term over a control volume
and a control solid angle will give:

—mnmn

Sy = 1B A 4

with

mn KC m/n’—m n mn m n
S =i, I°(T) + o oo AQ
(! ) (m.m)

and

—m'n'mn 1 = =
A / / B — B)dQde
AQ™AQ A Jagm

The radiative intensity is herein also assumed constant
within the control volume and the control solid angle.
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