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Abstract

The radiative transfer equation is solved by the finite-volume method in an axisymmetric two-dimensional geometry

with absorbing, emitting, and either isotropically or anisotropically scattering gray medium. Explicit expressions of the

coefficients appearing in the discretized angular redistribution term have been determined. These coefficients verify the

recursive relation established by Carlson and Lathrop [Greenspan, Kelber, Okrent (Eds.), Computing Method in

Reactors Physics, Gordon and Breach, New York, 1968, p. 171] and lead to accurate numerical results.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The axisymmetric radiative transfer in cylindrical

enclosure has been studied extensively due to its geo-

metric simplicity and practical engineering applications

to gas turbine combustors, heat pipes, nuclear reactors

safety and pulverized coal combustors. During the past

few decades, numerous methods have been proposed to

solve the radiative transfer equation (RTE), which is

integro-differential equation in nature (Monte Carlo

method [1], flux method [2], zones method [3], Galerkine

method [4], Harmonic spherical method [5], method of

solution based on using appropriate expansion functions

[6], discrete ordinates method, MOD [7,8] and the finite-

volume method (FVM) [9–13]).

The axisymmetric RTE includes a partial derivative

with respect to an angular coordinate, typically referred

to as an angular redistribution term (ART) of radiative

energy. Following the artifice of Carlson and Lathrop

[14], which maintains neutron conservation and permits

minimal direction coupling, among other works using

the DOM, Fiveland [7], Jendoubi et al. [8] and Jama-
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luddin and Smith [15] have used a recursive relation for

the numerical treatment of this term. The recursive

relation determined by [14] has been also used by Baek

and Kim [13] to develop a modified discrete ordinates

method (MDOM) in order to study radiative transfer in

an axisymmetric cylindrical enclosure.

A FVM has been used by Chui and Raithby [9] to

compute radiant heat transfer on a nonorthogonal,

boundary-fitted meshes. To solve three-dimensional

radiation problems in cylindrical enclosures, Chui et al.

[10] have implemented a FVM and present a mapping

for solution of axisymmetric problems by solving the

intensity in a single azimuthal direction. The FVM for

computing radiative heat transfer has been extended to

domains with periodic boundaries by Mathur and

Murthy [16]. The authors have used a new technique to

account for control angle overhang, and to correctly

redistribute radiant energy at rotationally periodic

boundaries. An unstructured FVM for radiative heat

transfer has been developed by Liu et al. [17] and they

are applicable for 2D planar, axisymmetric and 3D

problems with structured, unstructured, or hybrid grids.

For a 2D axisymmetric problem, the authors have

employed the recursive relation developed by [14] to

treat the angular derivative term.
ed.



Nomenclature

Ae;Aw;At;Ab surface area, m2

Dmn
cr radial directional weights

E emissive power (¼ rT 4), Wm�2 sr�1

H cylinder height, m

I actual radiative intensity, Wm�2 sr�1

I0 blackbody radiative intensity, Wm�2 sr�1

ja absorption coefficient, m�1

js scattering coefficient, m�1

je extinction coefficient, m�1

jem modified extinction coefficient, m�1

Nr, Nz radial and axial nodal number

Nh, Nw polar and azimuthal angle number

Qr dimensionless radiative heat flux

qr radiative heat flux, Wm�2

R cylinder radius, m

r; z distance along radial and axial direction, m

rc cylinder radius, m

zc cylinder height, m

S source term (Eq. (2))

T temperature, K

Greek symbols

amn�1
2

coefficients of the angular derivative term

e emissivity

Dmn
cz axial directional weights

Dr, Dz radial and axial steps

Dh, Dw polar and azimuthal steps

DXmn discrete control (solid) angle

r Stefan–Boltzmann constant (¼ 5.67 · 10�8

Wm�2 K �4)

s optical thickness (¼ jarc)
hP scattering angle
~X, ~X0 outward and inward radiation directions

U scattering phase function

l; g; n direction cosines

Subscripts

b blackbody

c cold, cylinder

g gas

h hot

E, W, T, B east, west, top, and bottom neighbors

nodal points of P
e, w, t, b east, west, top, and bottom control volume

faces

P nodal point in which intensities are located

r related to the r-axis
z related to the z-axis
w wall

Superscripts

0 blackbody

m; n;m0; n0 radiation direction

r radiative quantity
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For our knowledge, no rigorous explanation of this

recursive relation has been presented. One intends, in the

present paper, to affirm the validity of this relation by

the determination of the explicit expressions of the

coefficients intervening in the discretized ART while

using the FVM and to validate the numerical results

obtained using the determined expressions by compari-

son with existing results.

The remainder of this article is divided into three

sections. The governing equations and the discretized

equations are firstly presented. This is followed by a

comparison of the present method (FVM) with other

available methods. Finally some concluding remarks

and an Appendix A are presented.
2. Mathematical formulation

Radiative heat transfer in a gray semi-transparent

medium is governed by the following equation [18]:

dI
ds

����
~X

¼ �jeð~rÞIð~r; ~XÞ þ Sð~r; ~XÞ ð1Þ
with

S ¼ jað~rÞI0ð~rÞ þ
jsð~rÞ
4p

Z
4p
Ið~r; ~X0ÞUð~X0 ! ~XÞdX0 ð2Þ

where ~X is the direction of propagation defined as:

~X ¼ l~er þ g~eu þ n~ez

and ðl; g; nÞ are the direction cosines expressed as fol-

lows:

ðl ¼ sin h cosw; g ¼ sin h sinw; n ¼ cos hÞ

ðh;wÞ are respectively, the polar angle and the azimuthal

angle defining the direction of propagation ~X (Fig. 1).

In the case of axisymmetric radiative transfer, Eq. (1)

is expressed in cylindrical coordinates as follows:

1

r
o

or
ðrlIÞ

����
ðu;z;h;wÞ

þ o

oz
ðnIÞ

����
ðr;u;h;wÞ

1

r
o

ow
ðgIÞ

����
ðr;u;z;hÞ

¼ �jeI þ Sð~r; ~XÞ ð3Þ

In Eq. (3), it appears a supplementary term regardless

the RTE expression in cartesian coordinates, namely



Fig. 1. Angular coordinate ðh;wÞ of the direction ~X defined in

the cylindrical base ð~er;~eu;~ezÞ.

Fig. 3. Control solid angle.
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called angular redistribution term (ART), whose

expression is as follows:

ART � � 1

r
o

ow
ðgIÞ

����
ðr;u;z;hÞ

ð4Þ
3. Numerical procedure

Eq. (3) is solved numerically by the FVM [19]. The

spatial domain is subdivided in Nr � Nz spatial control

volumes (Fig. 2) where:

Dr ¼ R
Nr

and Dz ¼ H
Nz

R and H are respectively, the radius and the height of the

cylindrical enclosure and Dr and Dz are, respectively r
and z space steps:

Dr ¼ re � rw; DZ ¼ zt � zb
Fig. 2. Spatial control volume in the r–z plane.
The total solid angle (X ¼ 4p str) is subdivided in

Nh � Nw control solid angles, where Dh ¼ p
Nh
. and

Dw ¼ 2p
Nw
.

Dh and Dw are respectively h and w steps: Dh ¼
hmþ

1
2 � hm�

1
2; Dw ¼ wnþ1

2 � wn�1
2.

The control angle DXmn is defined (Fig. 3) by the

angular range bhmþ1
2¼mDh;hm�

1
2¼ðm�1ÞDhc and bwnþ1

2¼
nDw;wn�1

2¼ðn�1ÞDwc:

DXmn ¼
Z hmþ

1
2

hm�
1
2

Z wnþ1
2

wn�1
2

sin hdhdw

The radiative intensity at a point P and in the direction

ðhm;wnÞ is represented by ImnP . The integration of Eq. (3)

over the control volume Dv and the control angle DXmn

gives:Z
Dv

Z
DXmn

1

r
o

or
ðIr sin h coswÞdvdX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðaÞ

þ
Z
Dv

Z
DXmn

o

oz
ðI cos hÞdvdX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðbÞ

�
Z
Dv

Z
DXmn

1

r
o

ow
ðI sin h sinwÞdvdX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðcÞ

¼
Z
Dv

Z
DXmn

ð�jeI þ Sð~r; ~XÞÞdvdX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðdÞ

ð5Þ

The development of terms (a), (b) and (c) leads to

(Appendix A):

ðaÞ ¼ Dmn
cr ðAeImne � AwImnw Þ ð6Þ

ðbÞ ¼ Dmn
cz ðAtImnt � AbImnb Þ ð7Þ

Ab, At, Aw, Ae are the areas of bottom, top, west and east

faces of the control volume Dv, respectively, and Dmn
cr and
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Dmn
cz are the direction cosines regarding the r and z

directions, respectively.

At ¼ Ab ¼ pðr2e � r2wÞ; Ae ¼ 2pDzre; Aw ¼ 2pDzrw

Dmn
cz ¼

Z
DXmn

ð~X �~ezÞdX ð8aÞ

Dmn
cr ¼

Z
DXmn

ð~X �~erÞdX ð8bÞ

ðcÞ ¼ ðAe � AwÞðamnþ1=2I
mnþ1=2
P � amn�1=2I

mn�1=2
P Þ ð9Þ

where

amnþ1
2
¼ � sinðwnþ1=2Þ Dh

2

�
� 1

4
½sinð2hmþ1=2Þ

� sinð2hm�1=2Þ�
�

ð10aÞ

amn�1
2
¼ � sinðwn�1=2Þ Dh

2

�
� 1

4
½sinð2hmþ1=2Þ

� sinð2hm�1=2Þ�
�

ð10bÞ

The discretized angular redistribution is written, in the

same form as by Carlson and Lathrop [14] in the same

form and the coefficients amnþ1=2 and amn�1=2 are deter-

mined by a recursive relation based on the condition of

radiative energy conservation:

amnþ1
2
� amn�1

2
¼ Dmn

cr ð11aÞ

am1
2
¼ 0 ð11bÞ

It can be easily shown that these recursive relations are

verified by the established expressions (Eqs. (10a) and

(10b)):

amnþ1
2
� amn�1

2
¼ � Dh

2

1

4
ðsin 2hmþ1

2

�
� sin 2hm�

1
2Þ
�
ðsinwnþ1

2

� sinwn�1
2Þ

¼
Z wnþ1

2

wn�1
2

coswdw
Z hmþ

1
2

hm�
1
2

1þ cos 2h
2

� �
dh

¼
Z wnþ1

2

wn�1
2

coswdw
Z hmþ

1
2

hm�
1
2

sin2 hdh

¼
Z wnþ1

2

wn�1
2

Z hmþ
1
2

hm�
1
2

cosw sin2 hdhdw ¼ Dmn
cr

am1
2
¼ � sinð0Þ Dh

2

1

4
½sinð2hmþ1

2Þ
�

� sinð2hm�1
2Þ�
�

¼ 0

The development of term (d) leads to (Appendix A):

ðdÞ ¼ �jeDvDX
mnImnP þ Smn

P DvDXmn ð12Þ
where

Smn
P ¼ js

4p
ImnP UmnmnDX

mn þ Smn
mp ð13aÞ

Smn
mp ¼ jaI0P ðT Þ þ

je

4p

X
ðm0n0Þ6¼ðm;nÞ

Im
0n0

P U
m0n0mn

DXm0n0 ð13bÞ

U
m0n0mn ¼ 1

DXmnDXm0n0

Z
DXm0n0

Z
DXmn

Uð~X0 ! ~XÞdXdX0

ð13cÞ

In order to overcome the convergence problem of the

numerical solution, due to the discretization of the phase

function that must verify the normalization condition

( 1
4p

P
m0n0 U

mnm0n0 DXm0n0 ¼ 1), a correction coefficient c is

used. This coefficient is obtained such:

1

4p

X
m0n0

ð1þ cÞUmnm0n0 DXm0n0 ¼ 1 ð14aÞ

Then

c ¼ 1
1
4p

P
m0n0 U

mnm0n0 DXm0n0 � 1 ð14bÞ

The function U
m0n0mn

is replaced by U
m0n0mn
1 ¼

ð1þ cÞUm0n0mn
.

Considering the modified extinction coefficient as:

jmn
em ¼ ja þ js

js

4p
U

mnm0n0

1 DXmn ð15Þ

the system of algebraic equations becomes:

AcDmn
cr I

mn
c � AwDmn

cr I
mn
w þ AtDmn

cz I
mn
t � AbDmn

cz I
mn
b

¼ �jmn
cm DvDX

mnImnP þ Smn
mP DvDX

mn þ ðAe � AwÞ

� ðamnþ1
2
I
mnþ1

2
P � amn�1

2
I
mn�1

2
P Þ ð16Þ

This system of algebraic equations has more unknowns

than the number of equations. Therefore other equa-

tions must be introduced to relate the control volume

facial intensity as well as the edge intensity of the

angular range to the nodal intensity. The following

simple step scheme is used to ensure positive intensity

[10,13]:

For Dmn
cr > 0 and Dmn

cz > 0

Imne ¼ ImnP ð17aÞ

Imnw ¼ ImnW ð17bÞ

Imnt ¼ ImnP ð17cÞ

Imnb ¼ ImnB ð17dÞ

I
mnþ1

2
P ¼ ImnP ð18aÞ

I
mn�1

2
P ¼ Imn�1

P ð18bÞ

with the condition: I
m1
2

P ¼ Im1P [20].
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Rearranging Eq. (16) for ImnP and substituting Eq.

(18a) for direction mnþ 1
2
results in:

ImnP ¼
AwDmn

cr I
mn
W þAbDmn

cz I
mn
B �ðAe�AwÞamn�1

2
I
mn�1

2
P þSmn

mPDV DXmn

ðAeDmn
cr þAtDmn

cz �ðAe�AwÞamnþ1
2
þjmn

emDV DXmnÞ
ð19Þ

Eqs. (18a) and (18b) hold for all directions, while Eqs.

(17a)–(17d) need to be rewritten as the direction cosines

(Dmn
cr > 0 and Dmn

cz > 0) change sign.
mn
4. Validation of numerical results

We have considered two cases of cylindrical enclo-

sures whose walls are assumed black:
z/zc

(c)
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0.16

Fig. 4. Comparison of dimensionless radial radiative heat flux profil

s ¼ 0:1, (b) s ¼ 1 and (c) s ¼ 5.
• Enclosure with an absorbing and emitting medium.

• Enclosure with scattering medium.

According to the symmetry condition along the

z-axis, the centreline is treated as a fictious, perfectly

specular reflecting boundary.

The results are presented in terms of normalized net

radiative heat fluxes defined by:

Qr
r ¼

1

Eb

Z
X¼4p

ð~X �~erÞdX ¼
X
mn

ImnP Dmn
cr ð20aÞ

Qr
z ¼

1

Eb

Z
X�4p

ð~X �~ezÞdX ¼
X

ImnP Dmn
cz ð20bÞ
z/zc
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es at the lateral cylinder surface for three optical thickness (a)
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where the normalization constant Eb is the maximum

emissive power, which is equal to rT 4
g in the first test

case (i.e. an absorbing–emitting medium) and equal to

rT 4
h in the second test case (i.e. a purely scattering

medium).

These two problems are solved by the present FVM

using expressions (10a) and (10b). In order to verify the

validity of the established expressions (i.e. Eqs. (10a)

and (10b)), comparisons are made with existing results

[8,21].

4.1. Enclosure with absorbing–emitting medium

The first test case involves a cylindrical enclosure

containing a homogeneous, absorbing–emitting medium

maintained at constant temperature (Tg ¼ 100 �C).The
walls are assumed cold (Tw ¼ 0 �C) and black (ew ¼ 1).

The cylinder dimensions are: height zc ¼ 2 m and radius

rc ¼ 1 m.

The number of spatial control volumes used for this

calculation is ðNr � NzÞ ¼ ð15� 35Þ. Because of the

problem symmetry, the total solid angle 4p is divided

into ðNh � NW
2
Þ ¼ ð6� 8Þ control solid angles which is

analogous to the conventionnel S12 DOM in the number

of radiation directions.

Fig. 4 shows a good agreement, especially for higher

values of the optical thickness, between our results and

the exact analytical solutions of radiative transfer in an

absorbing, emitting medium in a cylinder obtained by

Dua and Cheng [21]. Larger value of s result in larger Qr
r

because emission is higher. Errors of up to ±5% in

these exact results are expected because they were ob-

tained by digitizing published plots. The discrepency

between our results with the exact solutions obtained

by [21] decrease with the optical thickness and this is
Table 1

Expansions coefficients in the phase function expansion [22]

J F1 F2 F3

0 1.00000 1.00000 1.00000

1 2.53602 2.00917 1.20000

2 3.56549 1.56339 0.50000

3 3.97976 0.67407

4 4.00292 0.22215

5 3.66401 0.04725

6 3.01601 0.00671

7 1.23304 0.00068

8 1.30351 0.00005

9 0.53463

10 0.20136

11 0.05480

12 0.01099

N 13 9 3

C1=3 0.84534 0.66972 0.40000

N þ 1: number of terms in the phase function expansion, C1=3: asym
due especially to the step scheme used here which

become inaccurate in the case of small values of the

optical thickness.
4.2. Purely scattering medium

The dimensions of the cylinder are height zc ¼ 2 m,

radius rc ¼ 1 m. The lateral surface is the hot surface

with Th ¼ 100 �C and the temperature of the bases is

Tc ¼ 0 �C.
The scattering phase function is approximated by a

finite series of Legendre polynomial series as:

Uð~X ! ~X0Þ ¼ Uðcos hP Þ ¼
XN
j¼0

CjPj cosðhP Þ

where hP is the scattering angle between the incoming

direction ~X0 and the outgoing direction ~X (cos hP ¼
~X0 � ~X). Cj’s are the expansion coefficients and Pj is the

Legendre polynomial of order j. The expansion coeffi-

cients in the case of forward-scattering (F2 and F3) and in

the case of backward-scattering (B2 and B3) are pre-

sented in Table 1 [22].

The number of spatial control volumes used for this

calculation is ðNr � NzÞ ¼ ð15� 35Þ and the total solid

angle 4p is divided into ðNh � Nw

2
Þ ¼ ð6� 8Þ.

Predictions of the non-dimensional heat flux distri-

bution on the lateral area (Figs. 5–9) are shown for

five different scattering conditions. As can be seen in

these figures, the forward-scattering phase function F2
transfers the most amount of radiation from the hot

wall into the cold medium. The backward-scattering

phase function B1 transfers the least amount of radiative

energy.
B1 B2

1.00000 1.00000

)0.56524 )1.20000
0.29783 0.50000

0.08571

0.01003

0.00063

6 3

)0.18841 )0.40000

metry factor.
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Comparisons with the numerical results obtained by

Jendoubi et al. [8] with the DOM shows a good agree-

ment.
5. Concluding remarks

Explicit expressions for the coefficients appearing in

the discretized ART have been determined using the
FVM. These coefficients verify the recursive relation

established by Carlson and Lathrop [14] and lead to

accurate numerical results.
Appendix A

By assuming that the radiative intensity is constant

on the east and the west control volume faces and in the

solid control angle DXmn, the development of the term

(a) yields to:
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surfaces for F3 scattering function for purely diffusing medium

case.
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Z
Dv

Z
DXmn

1

r
o

or
ðrI sin h coswÞdvdX

¼
Z
DXmn

Z 2p

0

Z zt

zb

Z re

rw

1

r
o

or
ðrI sin h coswÞrdrdudzdX

¼ 2pDzðreImne � rwImnw Þ
Z
DXmn

sin h coswdX

¼ 2pDzðreImne � rwImnw Þ
Z
DXmn

~er � ~Xmn dX

¼ Dmn
cr AeImne � Dmn

cr AwImnw

where Dmn
cr ¼

R
DXmnð~er � ~XmnÞdX is the direction cosine in

the r-direction and Aw and Ae are the areas of the west

and east face of the control volume, respectively.

The development of the term (b) is also done by

assuming that the radiative intensity is constant on

the top and bottom control volume faces and within the

control solid angle. Considering these assumptions, the

term (b) will be written as:

Z
Dv

Z
DXmn

o

oz
ðI cos hÞdvdX

¼ pðr2e � r2wÞðImnt � Imnb Þ
Z
DXmn

cos hdX

¼ pðr2e � r2wÞðImnt � Imnb ÞDmn
cz

¼ Dmn
cz AtImnt � Dmn

cz AbImnb

where Dmn
cz ¼

R
DXmnð~ez � ~XmnÞdX is the direction cosine in

the z-direction and At and Ab are respectively the area

surfaces of the top and bottom face of the control vol-

ume, respectively.

The ART is developed by assuming that the radiative

intensity is constant within the control volume and in

the angle range bhm�1
2; hmþ

1
2c. Taking into account these

assumptions, the treatment of the term (c) leads to:
�
Z
Dv

Z
DXmn

1

r
o

ow
ðI sin h sinwÞdvdX

¼ �2pDzDr
Z
DXmn

o

ow
ðI sin h sinwÞ sin hdhdw

¼ �ðAe � AwÞ
Z hmþ

1
2

hm�
1
2

sinðh2ÞðImnþ
1
2

P sinwnþ1
2 � I

mn�1
2

P

� sinwn�1
2Þdh

¼ �ðAe � AwÞ sinwnþ1
2

Dh
2

�
� 1

4
½sinð2hmþ1

2Þ

� sinð2hm�1
2Þ�
�
I
mnþ1

2
P þ ðAe � AwÞ sinwn�1

2
Dh
2

�

� 1

4
½sinð2hmþ1

2Þ � sinð2hm�1
2Þ�
�
I
mn�1

2
P

¼ ðAe � AwÞðamnþ1
2
I
mnþ1

2
P � amn�1

2
I
mn�1

2
P Þ

where amn�1
2
are coefficients of the ART defined as:

amnþ1
2
¼ � sinðwnþ1=2Þ Dh

2

�
� 1

4
½sinð2hmþ1=2Þ

� sinð2hm�1=2Þ�
�

amn�1
2
¼ � sinðwn�1=2Þ Dh

2

�
� 1

4
½sinð2hmþ1=2Þ

� sinð2hm�1=2Þ�
�

The source term (d) is written as:

S ¼ jað~rÞI0ð~rÞ þ
jsð~rÞ
4p

Z
4p
Ið~r; ~X0ÞUð~X0 ! ~XÞdX0

The discretization of this term over a control volume

and a control solid angle will give:

Smn
P ¼ js

4p
ImnP U

mnmn
DXmn þ Smn

mp

with

Smn
mp ¼ jaI0ðT Þ þ

je

4p

X
ðm0 ;n0Þ6¼ðm;nÞ

Im
0n0

P U
m0n0mn

DXm0n0

and

U
m0n0mn ¼ 1

DXmnDXm0n0

Z
DXm0n0

Z
DXmn

Uð~X0 ! ~XÞdXdX0

The radiative intensity is herein also assumed constant

within the control volume and the control solid angle.
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